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Abstract. ​The Unified Medical Language System (UMLS) is a repository of biomedical vocabularies developed by               
the US National Library of Medicine to integrate a variety of ways the same concepts are expressed by different                   
terminologies and provide cross-walk among them. However, the current approach of constructing and inserting              
new resources to the existing Metathesaurus relies heavily on lexical knowledge, semantic pre-processing, and              
manual audits by human editors. ​Given the recent successes of supervised machine learning approach in their                
applications to the medical and healthcare domains, this project explores the use of Deep Learning to identify                 
synonymy and non-synonymy among English UMLS concepts at the atom level. We use the Siamese network with                 
LSTM and CNN models to learn the similarities and dissimilarities between pairs of atoms from the active subset of                   
2019AA UMLS. We generate about 15 million synonym pairs and for non-synonyms, interesting pairs that are                
lexically similar but differ in semantics are generated using a heuristic approach with Jaccard index. To                
disambiguate concepts with lexically identical atoms, we contextualize the pairs with various enrichment strategies              
that reflect the information available to the UMLS editors including the source synonymy, hierarchical context, and                
source semantic group. Using the base lexical features of the atoms yields an overall F1-score of 75.97%. Adding                  
source synonymy to the base yields a higher precision and overall F-1 score of 86.54% and 87.63% respectively.                  
Whereas, adding hierarchical context trades precision for higher recall of 90.38%. Adding source synonymy,              
hierarchical context, and the semantic group provides an overall increase in accuracy to 95.20%. However, adding                
source synonymy of hierarchical context does not yield any noticeable improvement. The Deep Learning approach               
provides relatively good performance in identifying synonymy and non-synonymy among atoms indicating a             
promising potential for emulating the current building process. ​Future works include evaluations with the manual               
rule-based normalization process of constructing the Metathesaurus and investigate the scalability, maintenance,            
and applicability aspects of these models. 
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1   Introduction 
 

The Unified Medical Language System (UMLS) is a rich repository of biomedical vocabularies developed              
by the US National Library of Medicine. It is an effort to overcome challenges to effective retrieval of                  
machine-readable information. One of which is the variety of ways the same concepts are expressed by different                 
terminologies and by different people [1]. For example, the concept of “Addison’s Disease” is expressed as                
“Primary hypoadrenalism” in the ​Medical Dictionary for Regulatory Activities ​(MedDRA) and as “Primary             
adrenocortical insufficiency” in the ​10th revision of the International Statistical Classification of Diseases and              
Related Health Problems (ICD-10). The lack of integration between these synonymous terms often leads to poor                
interoperability between information systems (i.e. how does one map a concept from one terminology to another)                
and confusion among health professionals. Hence, the UMLS aims to integrate and provide cross-walk among               
various terminologies as well as facilitate the creation of more effective and interoperable biomedical information               
systems and services, including electronic health records​1​. Till date, it is increasingly being used in areas such as                  
patient care coordination, clinical coding, information retrieval, and data mining. There are three UMLS              
Knowledge Sources: the Metathesaurus, the Semantic Network, and the SPECIALIST Lexicon and Lexical Tools.  
1​https://www.nlm.nih.gov/research/umls/index.html 
2​https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/notes.html 

https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/notes.html


 
The Metathesaurus is a multi-purpose vocabulary database organized by concept or meaning. It is              

constructed from the electronic versions of different thesauri, code sets, classifications, and lists of controlled terms                
used in biomedical, clinical, and health services, known as “terminologies” or interchangeably as “source              
vocabularies”. It connects alternative names (i.e. name variants) that are considered to be synonymous under the                
same concept and identifies useful relationships between various concepts [1]. Concepts are assigned at least one                
Semantic Type from the Semantic Network to provide broad and consistent semantic categorization. The Lexical               
Tools provide lexical information for language processing such as identifying string variants and providing              
normalization as normalized string indexes to the Metathesaurus. As of May 6, 2019, the 2019AA release of the                  
UMLS Metathesaurus contains approximately 3.85 million biomedical and health-related concepts and 14.6 million             
concept names from 210 source vocabularies including the NCBI taxonomy, ​Systematized Nomenclature of             
Medicine - Clinical Terms​ (SNOMED CT),  Gene Ontology, the ​Medical Subject Headings​ (MeSH), and OMIM​2​.  

 
1.1  Construction of the UMLS Metathesaurus 

 
The current approach in creating the Metathesaurus uses the lexical knowledge, semantic pre-processing,             

and UMLS human editors. The main idea is that synonymous terms originating from various source vocabularies                
are clustered into a concept with a preferred term and a Concept Unique Identifier (CUI). The basic building block                   
of the Metathesaurus, also known as an “atom”, is a concept string from each of the source vocabularies. Simply                   
put, each occurrence of a string in each source vocabulary is assigned a unique atom identifier (AUI). When a                   
lexically identical string appears in multiple source vocabularies for example “Headache” appearing in both MeSH               
and ICD-10, they are assigned different AUIs. These AUIs are then linked to a single string identifier (SUI) to                   
represent occurrences of the same string. Each SUI is linked to all of its English lexical variants (detected using the                    
Lexical Variant Generator tool) by a common term identifier (LUI). These LUIs may subsequently be linked to                 
more than one CUI due to strings that are lexical variants of each other have different meanings​1​. Table 1 illustrates                    
how synonymous terms are clustered into a CUI. 
 

Table 1: Metathesaurus AUI, SUI, LUI, and CUI 

String (Source) AUI SUI LUI CUI 

Headache (MeSH) A0066000 
S0046854 

L0018681 
C0018681 

Headache (ICD-10) A0065992 

Headaches (MedDRA) A0066007 
S0046855 

Headaches (OMIM) A12003304 

Cephalodynia (MeSH) A0540936 S0475647 L0380797 

 
In addition, some source vocabularies provide source synonyms, hierarchical and non-hierarchical           

relationships, and metadata information for semantic pre-processing. The UMLS human editors are involved to              
associate concepts and perform manual reviews. It is important to note that, when combining these source                
vocabularies, the Metathesaurus preserves the meanings, concept names, and relationships [1]. Nonetheless, these             
processes of constructing, combining, and inserting new resources to the existing Metathesaurus from identifying              
lexical variants to manual audits by domain experts can be both arduous and time-consuming especially at the                 
current state of Metathesaurus comprising of over 3.85 million concepts. Given the recent advent of supervised                
machine learning approaches in their applications to the medical and healthcare domains [2], can they be trained to                  
“fit” a new resource to the current “universe” of Metathesaurus? 
 



 
1.2  Supervised Machine Learning 

 
Supervised machine learning is a learning function that maps an input to an output based on examples of                  

input-output pairs [3]. The Metathesaurus comprises of approximately 10 million English atoms, each with its CUI                
assignment, one can train a supervised classifier to predict which CUI should be assigned to an “unseen” or “new”                   
atom (since atoms having the same CUI are synonymous) as an approach to insert new resources to the current                   
Metathesaurus. However, this approach is considered as an extreme classification task [4] due to the huge                
prediction space of approximately 3.85 million CUIs. Nonetheless, the CUI is merely a “mechanism” to cluster                
synonymous terms under the same “bucket”. We are primarily interested in whether two atoms are synonymous and                 
hence be labeled with the same CUI, regardless of whether this CUI has already existed in the Metathesaurus.                  
Hence, this project is modeled as a similarity task where we want to assess similarity based not only on the lexical                     
features of an atom but also based on its context (represented by the lexical features of neighboring concepts in this                    
source vocabulary). Concretely, a fully-trained model should identify and learn scenarios where (1) two atoms that                
are lexically similar in nature but are not synonymous, e.g., “Lung disease and disorder” versus “Head disease and                  
disorder” and vice versa, (2) atoms that are lexically dissimilar but are synonymous, e.g., “Addison’s disease”                
versus “Primary adrenal deficiency”. 

 
Measuring the similarity between words and sentences, also known as Semantic Text Similarity (STS) task               

is an active research area in Natural Language Processing (NLP) due to its crucial role in various downstream tasks                   
such as information retrieval, machine translation, text summarization, and in our case, synonyms clustering. The               
STS task can be expressed as follows: given two sentences, a system returns a continuous score on a scale from 1 to                      
10 indicating the degree of similarity. STS is a challenging task due to the inherent complexity in language                  
expressions, word ambiguities, and variable sentence lengths. Although there are existing models such as              
bag-of-words or TF-IDF models that incorporate a variety of similarity measures [5] for example string-based [6],                
term-based [7], most are syntactically and semantically constrained. Recent successes in sentence similarity have              
been obtained from combining corpus-based [8] and knowledge-based similarity, e.g. word embeddings [9] with              
supervised machine learning approach, e.g. Deep Neural Networks [10] and Convolutional Neural Networks (CNN)              
[11] to perform deep analysis of words and sentences to learn the semantics and structure necessary to predict the                   
sentence similarity. Hence in this paper, we aim to explore the realm of Deep Learning for the following                  
contributions: 

 
1) Identify synonymy and non-synonymy among English UMLS concepts at the atom level (i.e. given two               

English atoms, are they synonymous and thus belong to the same CUI?) 
2) Investigate whether Deep Learning approach could emulate the current Metathesaurus building process 

 
The rest of the report is organized as follows. Section 2 presents some related work in the area of STS.                    

Section 3 describes our methodological approach and Section 4 shows the results and evaluations. Section 5                
discusses the outcomes and limitations of this project and Section 6 concludes the project with future work. 

 
2    Related Work 
 

Prior work on STS task centered heavily on hand-engineered lexical features (e.g. word overlap and               
subwords) and linguistic resources (e.g. corpora). Lai et. al extracted word relations and features based on                
co-occurrences and similarities between image captions and applied regression functions to estimate similarity             
scores [12]. Zhao et. al leveraged on the syntactic relationship, distinctive content similitudes, length and string                
features [13]. Severyn et al. learned textual similarity by integrating relational syntactic and structural              
representations with Support Vector Regression [14]. Only in recent years, the use of Deep Neural Networks for                 
 



 
STS has gained much attention. In particular, the use of word embeddings for features representation that is trained                  
on huge corpora has shown to improve the results over conventional lexical feature engineering approach [15]. In                 
addition, the advent of various Deep Learning architectures such as Siamese, Recurrent Neural Network (RNN),               
and CNN further improve the prediction of sentence similarity and relatedness [10].  
 

Contrary to the traditional neural network which takes in one input at a time, the Siamese network or model                   
is an architecture that takes in a pair of inputs and learns representations based on the explicit similarity and                   
dissimilarity information (i.e. the pair of similar and dissimilar inputs) [22]. It was originally used for signature                 
verification [22] and has since been applied to various applications such as face verification [23], unsupervised                
acoustic modeling [24], and learning semantic entailment [10] as well as text similarity [25]. On the other hand,                  
RNN excels at processing sequential information due to the presence of memory cell to store and “remember” data                  
read over time [16]. Another variant of RNN is the Long Short-Term Memory (LSTM). It enhances the standard                  
RNN to handle long-term dependencies with the introduction of “gates” (input, output and forget gates) to control                 
the flow of and retain information better through time. LSTM is more accurate in handling long sequences, but at                   
the cost of higher memory consumption and slower training times compared to standard RNN which is faster but                  
less accurate. Nonetheless, a combination of Siamese Network with RNN and LSTM have been applied to various                 
NLP tasks including similarity assessment with great success [10, 17, 18]. On the other hand, CNN has also                  
performed well in NLP due to its ability to extract distinctive features at a higher granularity [20]. He et al. used                     
Siamese CNN architecture to learn sentence embedding and predict sentence similarity with features from various               
convolution and pooling operations [21]. In this project, we use a combination of LSTM and CNN to achieve a                   
more accurate similarity prediction. The next section describes our methodology with respect to the characteristics               
of the UMLS dataset. 
 
3    Methodology 
 

The scope of this project can be streamlined into four different components: (i) retrieving and parsing the                 
UMLS dataset, (ii) generating features for learning, (iii) creating the Siamese Neural Networks, and (iv) evaluating                
different Siamese networks with different data enrichment strategies. As for the dataset, we use the active subset                 
from the 2019AA UMLS and remove the derivative, duplicative, and spelling variants sources. Table 2 shows the                 
sources removed and the final characteristics of the dataset. 
 

Table 2: Sources Removed and Final Dataset Characteristics 

Sources Removed Sources 

Derivative and duplicative NCI_BRIDG, NCI_BioC, NCI_CDC, NCI_CDISC, NCI_CDISC-GLOSS,     
NCI_CPTAC, NCI_CRCH, NCI_CTCAE, NCI_CTCAE_3, NCI_CTCAE_5,     
NCI_CTEP-SDC, NCI_CTRP, NCI_CareLex, NCI_DCP, NCI_DICOM,     
NCI_DTP, NCI_EDQM-HC, NCI_FDA, NCI_GAIA, NCI_GENC, NCI_ICH,      
NCI_INC, NCI_JAX, NCI_KEGG, NCI_NCI-GLOSS, NCI_NCI-HGNC,     
NCI_NCI-HL7, NCI_NCPDP, NCI_NICHD, NCI_PI-RADS, NCI_PID,     
NCI_RENI, NCI_UCUM, NCI_ZFin, HCDT, HCPT, ICPC2P, LCH_NW 

Spelling Variants ICD10AE, ICD10AMAE, MTHICPC2EAE, MTHICPC2ICD10AE 

Final UMLS Size 

Number of atoms 9,533,853 

Number of CUIs 3,793,516 

 



 
3.1  Feature Engineering 
 

The primary goal is to learn the similarities between atoms within a CUI and dissimilarities between atoms                 
from different CUIs. Prior to generating the positive and negative pairs, we preprocess the lexical features of the                  
atoms similar to how [27] preprocess their dataset (remove all punctuation except hyphen, lowercase, and tokenize                
by space) as we use their pre-trained BioWordVec embedding in our downstream models. 
 
Synonyms. ​We generate positive pairs based on CUI-asserted synonymy between atoms. Table 3 shows examples               
of positive pairs generated from one CUI. 
 

Table 3: Positive Pairs from a Single CUI 

CUI Atom 

C0001403 ● Addison disease 
● Primary hypoadrenalism 
● Primary adrenocortical insufficiency 
● Addison’s disease (disorder) 

Positive Pairs 

Addison disease Primary hypoadrenalism 

Addison disease Primary adrenocortical insufficiency 

Addison disease Addison’s disease (disorder) 

Primary hypoadrenalism Primary adrenocortical insufficiency 

Primary hypoadrenalism Addison’s disease (disorder) 

Primary adrenocortical insufficiency Addison’s disease (disorder) 

 
Non-Synonyms. ​On the contrary, it is computationally infeasible in terms of time and space complexities to                
generate approximately 9.5 million atoms squared of negative pairs since it is one atom against all other atoms from                   
non-related CUIs. In addition, the class imbalance between positives and negatives will induce learning bias in                
which the model will suffer from lower precision in detecting synonyms due to a preference towards                
non-synonyms. In spite of this, the intuition is that we want the Deep Learning model to learn interesting negative                   
pairs that are lexically similar but differ in semantics. Hence, we adopt a heuristic approach to reduce the space of                    
negative pairs where we compute Jaccard index to include negative pairs with high Jaccard similarity from different                 
CUIs with a cut-off threshold of 0.6 Jaccard index (Table 4). The pairs are then sorted from the highest to lowest                     
Jaccard index and the number of inclusion pairs is shown in Table 5. 

accard Index (A, ) J B =  |A ⋃ B|
|A ⋂ B| = |A ⋂ B|

|A| + |B| − |A ⋂ B|  
 

Table 4: Jaccard Computation on Pairs of Atom from Different CUIs 

C0000473 C0038784 

Product containing ​para-aminobenzoic​ acid Product containing ​sulfuric ​acid 

Jaccard Index = Intersection (3)/ Union (5) = ​0.6 

 



 
The final dataset consists of pairs of strings sampled in a 1:1, 3:1, 4:1, 6:1, and 10:1 ratio of between-CUI                    
(negative) pairs to within-CUI (positive) pairs. These ratios are adopted from [24, 25] for Siamese networks. 
 

Table 5: Final Dataset Size 

Feature Number of Pairs 

Synonyms 15,647,133 

Ratio of between-CUI non-synonym pairs to within-CUI synonym pairs 

1:1 15,647,133 

3:1 46,941,399 

4:1 62,588,532 

6:1 93,882,798 

10:1 156,471,330 

 
3.2  Experiments 

 
The entry point of our experiment is the lexical features of an atom. However, in order to disambiguate                  

concepts with lexically identical atoms, e.g. the concept “nail” with CUI “C0222001” and “C0021885” shown in                
Figure 1, there is a need to contextualize these concepts with additional features that indicate different meanings.                 
Hence, we compose the experiments with various data enrichment strategies (Figure 2) that reflect the information                
available to the UMLS editors during manual construction of the Metathesaurus including the source synonymy,               
hierarchical context, and source semantic group. 
 
Base. ​The base experiment consists of just the lexical features of an atom for all synonym (positive) and                  
non-synonym (negative) pairs. 
 
Source synonymy. ​Some source vocabularies provide synonyms to the atoms which enrich the original atom with                
additional lexical features that are synonymous. We generate these source synonyms based on the Source Concept                
Unique Identifier (SCUI) of each atom. 
 
Hierarchical context. ​Some source vocabularies provide hierarchical relationships (ancestor-descendant or          
parent-child or broader-narrow relations) which extend the original atom with surrounding contexts. We generate              
the hierarchical context using the unique lexical features of immediate (1-level) parents and children based on the                 
source relations. 
 
Semantic group. ​The semantic group provides an additional layer of high-level semantic categorization to an atom.                
Figure 1 shows the two concepts “nail” are syntactically similar but they differ in semantics in which one refers to                    
the body part and another refers to the medical device. Since not all source vocabularies provide hierarchical                 
relationships, we assign a semantic group to the best knowledge of the human editors to the source of these                   
concepts. Whereas for sources that provide hierarchical relationships, we assign semantic group based on the               
second-level concept from the root node of the original atom as a proxy to semantic categorization. 

 
 



 

 
Figure 1: Concepts Disambiguation. ​The dotted brown boxes indicate source synonymy and the green boxes 
indicate hierarchical contexts. 
 

 
Figure 2: Five Experimental Setup 

 
3.3  Deep Learning Models 
 

A total of two different Deep Learning Models are designed: Siamese LSTM and Siamese CNN-LSTM. 
 
Siamese LSTM. ​This model adopts the Siamese structure from [10] (Figure 3) where a pair of atoms are first                   
transformed into their respective numerical word representations, i.e. embedding of word vectors. A word              
embedding is a language modeling and feature learning techniques in NLP where words are mapped to vectors of                  
real numbers with varying dimensions. These word vectors are positioned in the vector space in a manner where                  
words that share similar contexts in the corpus are situated close to one another in the space [26]. Instead of training                     
the word vectors from scratch, we use the pre-trained biomedical word embedding (BioWordVec-intrinsic) with              
dimension size of 200 per word vector that is trained on PubMed text corpus and MeSH data [27]. The rationale is                     
to “precondition” the Siamese network with prior knowledge of the inherent similarity between words in the UMLS                 
vocabulary. Upon plotting a word length distribution (Figure 3), approximately 97% of atoms in the UMLS have a                  
word length of lesser or equal to 30. We apply padding or truncation to restrict the word length of each atom to a                       
maximum of length 30 to ensure a uniform dimension to speed up the training process. The embeddings of the pair                    
of atoms are fed to the LSTM network which consists of 50 hidden learning units. These units learn the specific                    
semantic and syntactic features based on word orders of each individual atoms through time. The output of the                  
model is a similarity score between the two atoms ranging from 0 to 1 (likelihood probability) measured by                  
Manhattan distance similarity function, a function that is well-suited for high dimensional space [28]. We apply this                 
model to Experiment 1. 
 



 
Siamese CNN-LSTM. ​We use this model for Experiment 2, 3, 4, and 5 to account for the additional features                   
(source synonymy and/or hierarchical context) and semantic group information. ​This model adopts the Siamese              
structure from [29] (Figure 4), however, it differs from the first model in its hidden learning layers. For this model,                    
instead of having only an embedding from the lexical features of the atoms, we concatenate two extra vectors                  
learned from the embeddings that represent the extra context information to the original atom vector. To generate                 
the “context bag”, we extract 60 unique lexical features from source synonyms and/or hierarchical context to enrich                 
the base features of an atom and sort them in alphabetical order to minimize word order randomness since the word                    
order is less prioritized prior to transforming them into context embedding. We apply CNN with 100 filters and a                   
window size of 5 [29] with batch normalization (to reduce overfitting) to analyze together all the words and                  
generates their representation as a unique structure and then apply a LSTM layer with 50 hidden learning units to                   
learn these features. Similarly, the semantic group information is incorporated by transforming it using              
BioWordVec embedding and subsequently feeding it to a LSTM layer with 50 hidden units. The outputs of each                  
LSTM layers (base, context, and semantic group) are averaged over time and these three 50-dimensional vectors are                 
concatenated and used as input to a 2-layer dense feedforward network with learning units of 128 and 50                  
respectively with Manhattan distance similarity function as the final output layer. 
 

The parameters of both models are optimized using the Adam method [30] and each model is trained for 20                   
epochs and validated with 5-fold cross-validation the Biowulf Cluster from the National Institute of Health (NIH)                
High-Performance Computing (HPC) Systems using a mix of Nvidia Tesla P100 and V100 graphical processing               
unit. Nonetheless, a set of experiments are conducted on a small data set (training and validation size of 100,000                   
and 20,000 respectively) to gauge the performance and desired capabilities of the models as well as to fine-tune the                   
hyperparameters of the network with different incremental range (e.g. learning rate with a range of 0.0005 to 0.001,                  
batch size with a range from 128 to 512). Table 6 summarizes the final set of parameters and hyperparameters that                    
are used for the baseline experiment 1 and enriched experiment 2, 3, 4, and 5 respectively. 

 

 
Figure 3: An overview of the Siamese LSTM Model. ​The weights of all the layers are shared between the left and                     
right branch of the model. 
 

 



 

 
Figure 4: An overview of the Siamese CNN-LSTM Model. ​Similarly, the weights of all the layers are shared                  
between the left and right branch of the model. 
 

Table 3:  The Set of Parameters used for Siamese LSTM and Siamese CNN-LSTM respectively 

Parameters/ Hyperparameters  Siamese LSTM Siamese CNN-LSTM  

Framework Keras 2.0 with Tensorflow backend Keras 2.0 with Tensorflow backend 

Word Vector Size 200 200 

Maximum Input Length 30 30 

Maximum Context Input Length - 60 

Embedding Trainable Trainable 

LSTM Hidden Units 50 50 

LSTM Activation Tanh Tanh 

CNN Filters - 100 

CNN Window Size - 5 

CNN Activation - ReLU with batch normalization 

Fully Connected Layer 1 - 128 units with ReLU activation 

Fully Connected Layer 2 - 50 units with ReLU activation 

Weights and Biases  Random Initialization Random Initialization 

Optimizer Adam Adam 

Learning Rate 0.001 0.001 

 



 

Loss Function Mean Squared Error (MSE) Mean Squared Error (MSE) 

Batch Size 128 128 

Number of Training Epochs 20 20 

Validation 5-fold cross-validation 5-fold cross-validation 

 
The rationale behind the configurations of some hyper-parameters as follows: 

● Random initialization of weights and biases ​ensure symmetry breaking for faster convergence.  
● Small batch size ​of 128 per epoch step is applied to reap the benefits of both stochastic and batch update                    

for computational faster and less memory overhead with a relatively good estimator.  
● The number of training epochs is set to 20 to ensure uniform comparison among models.  
● Adam ​optimizer is applied to reap the benefits of both RMSprop optimizer and momentum using stochastic                

gradient descent (SGD) to achieve faster learning [30].  
● A standard​ small learning rate​ of 0.001 was selected to ensure numerical and weight stability. 

 
4    Results and Evaluations 
 

We evaluate the performance of the models in terms of validation accuracy, precision, recall, overall               
F1-Score, Matthew correlation coefficient, specificity, sensitivity, and false-positive rate. The rationale for such             
extensive measurements is due to the models learning at various proportions of negative to positive pairs and the                  
accuracy metric alone may be “skewed” towards correctly identifying negative pairs and less of positive pairs.                
Table 4 shows the performance metrics achieved by the 6:1 ratio of negative to positive pairs in the process of                    
classifying synonyms and non-synonyms. Table 5 shows some examples of true positives and true negatives               
correctly identified, false positives identified, and false negatives not identified. 

 
Table 4: Performance of the 6:1 Ratio of Negative to Positive Pairs 

 
Model/ 

Performance 
Metrics 

Siamese LSTM Siamese CNN LSTM 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

Base Base 
+ Source Synonymy 

Base 
+ Hier. Context  
+ Semantic Group 

Base 
+ Source Synonymy  
+ Hier. Context 
+ Semantic Group 

Base 
+ Source Synonymy 
+ Hier. Context 
+ Hier. Source Synonymy 
+ Semantic Group 

Accuracy 0.9333 0.8720 0.9486 0.9520 0.9541 

Precision 0.7828 0.8654 0.7643 0.8296 0.8009 

Recall 0.7379 0.8874 0.8381 0.9038 0.8978 

F1-Score 0.7597 0.8763 0.7995 0.8428 0.8466 

Matthew CC 0.7214 0.7441 0.7712 0.8173 0.8215 

Specificity 0.9659 0.8560 0.9640 0.9601 0.9633 

Sensitivity 0.7379 0.8874 0.8381 0.9038 0.8978 

False Positive Rate 0.0341 0.1440 0.0360 0.0399 0.0367 

 

 



 
 

Table 5: Examples of True Positives and True Negatives Correctly Identified, False Positives Identified, and 
False Negatives Not Identified by Experiment 5 

True Positives (Synonyms) Correctly Identified 

nail clipper cutters nail 

injury of salivary gland salivary gland injury 

avulsion fracture sprain 

True Negatives (Non-synonyms) Correctly Identified 

fingernail infection of fingernail 

product containing only ​iron ​medicinal product product containing only ​levorphanol ​medicinal product 

medical and surgical gastrointestinal system insertion ​ileum 
via natural or artificial opening endoscopic ​infusion ​device 

medical and surgical gastrointestinal system revision ​stomach 
via natural or artificial opening endoscopic ​other ​device 

False Positives (Non-synonyms) Identified 

finding of ​wrist ​joint finding of ​knee ​joint 

malignant neoplasm of upper limb malignant neoplasm of​ muscle of​ upper limb 

skin ​wound ​of axillary fold skin ​cyst ​of axillary fold 

False Negatives (Synonyms) Not Identified 

hla antigen human leukocyte antigen 

pyelotomy incision of renal pelvis treatment 

routine cervical smear screening for malignant neoplasm of cervix 

 
5    Discussion 
 

Based on Table 4, we observe that using only the lexical features of atom yields an overall F1-score of                   
75.97%. Adding source synonymy to the base yields a higher precision and overall F-1 score of 86.54% and                  
87.63% respectively. Whereas, adding hierarchical context trades precision for higher recall of 90.38%. Adding              
source synonymy, hierarchical context, and the semantic group gives an overall boost to the accuracy of 95.20%.                 
However, adding source synonymy of hierarchical context does not yield any noticeable improvement. Some of the                
plausible explanations are synonyms provided by the source are closely related and they are alternative variants to                 
the base atom, hence the higher precision. Whereas, hierarchical contexts or parents and children relationships               
represent broader and narrower relations that encompass a wider variety of lexical features to the base atom, hence                  
the higher recall. However, extending the hierarchical context to include the source synonymy of the parents and                 
children atoms may be overstretched from the original semantics of the base atom and the model may perceive                  
them as noise.  
 

 



 
Based on Table 5, we observe the performance of the trained model from Experiment 5 on real-scenario                 

examples. With the incorporation of LSTM, the model is able to handle both short and long sequences as well as                    
learn the positional variants of the atoms, e.g. “injury of salivary gland” versus “salivary gland injury”. Combining                 
with CNN, the model is able to extract and learn pairs that are lexically similar in nature but are not synonymous,                     
e.g., “product containing only ​iron ​medicinal product” versus “product containing only ​levorphanol ​medicinal             
product” and vice versa, atoms that are lexically dissimilar but are synonymous, e.g., “avulsion” versus “fracture                
sprain”. Nonetheless, for words that are closely related to each other semantically such as “wrist” and “knee”, and                  
“wound” and “cyst”, the model fails to recognize them as non-synonyms. In addition, the model fails to identify                  
synonyms with lexical features that are rare such as “pyelotomy” which indicates that there is still room for                  
fine-tuning the model e.g. expanding the current architecture to learn from more examples.  
 
6    Conclusion 
 

In conclusion, this study demonstrates the feasibility of using Deep Learning to provide relatively good               
performance in identifying synonymy and non-synonymy among atoms indicating a promising potential for             
emulating the current Metathesaurus building process. The findings can be summarized as follows: (i) Adding               
source synonymy provides higher precision, but (ii) adding hierarchical context trades precision for higher recall.               
However, (iii) adding source synonymy, hierarchical context, and the semantic group gives an overall boost to                
accuracy, and (iv) adding source synonymy of hierarchical context does not yield any noticeable improvement.               
Nonetheless, this approach does not address the inter-concept and semantic type categorizations (other components              
in the Metathesaurus). Future work includes (a) evaluations with the manual rule-based normalization process of               
constructing the Metathesaurus since the current evaluations are done within the realm of Deep Learning, i.e.                
evaluating which features provide better performance, and not between the manual and automatic way of               
constructing the Metathesaurus, as well as (b) the scalability, maintenance, and applicability aspects of these               
models to complement the current lexical processing and the UMLS human editors. 
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